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Conservation actions are urgently needed to tackle biodiversity loss in intensively managed agricultural land-
scapes. Production lands are usually heterogeneous and contain low-yield areas that can be set aside for
biodiversity conservation without serious yield losses. Here, we introduce Ecologically-Informed Precision
Conservation, a framework that integrates yield mapping and ecological theory to select the best areas to create
new set-asides while ensuring high erop yields at the farm/landscape level. Long-term yield maps can be
generated using globally available satellite data and basic information on field/farm erop yield from farmers.
Ecological principles are then used to select the subset of areas with the highest potential for biodiversity con-
servation by prioritising those that increase connectivity, maximise habitat heterogeneity and decrease landscape
grain size. The created non-crop habitats can be permanent and thus ensure biodiversity support over time. In
addition, agricultural management efficiency can be enhanced by improving field shapes. The framework pro-
vides the basis for a practical, user-friendly tool that informs all interested stakeholders on how to rationalise
existing agricultural landscapes using already-existing farming systems and available technologies. High cost-
effectiveness from an economic and conservation perspective, along with the creation of heterogeneous non-
erop habitats, make our framework a promising solution to re-design agricultural landscapes.
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Digital agriculture to design sustainable
agricultural systems

The global food system must become more sustainable. Digital agriculture — digital and geospatial technologies to
monitor, assess and manage soil, climatic and genetic resources — illustrates how to meet this challenge so as to

balance the economic, environmental and social dimensions of sustainable food producti

Bruno Basso and John Antle

\fty years ago, many people doubted

the ability of the world to feed stself.

While food securtty remains a challenge
for the poorest peaple, the global food
system has been so successful in producing
cheap food calories that today three-
times more people in the world are obese
than underweight due to malnutritton”.
The current food system 1s able to do
this largely because of crop and livestock
production technologies that produce and
deliver more food calortes to more people
than was previously thought possible. But
agriculture’s contributions to greenhowse gas
emisstons, water pollution and biodiversity
loss show that major agricultural systems
are on largely unsustatnable trajectories’.
As Schramski et al.” point out, changing
the way we produce and use energy in
agriculture as well as the rest of the sconomy
must be an important part of meeting the
sustainability challenge. However, It seems
unlikely that a development pathway for a
human population approaching 10 billion
could be achteved with less total energy use.
And since some environmental costs will
be associated with increased energy use and
a substantially larger human population,
achieving a more sustainable development
pathway will involve managing trade-offs
in complex natural and human systems
among econemic, environmental and social
dimenstons of human well-betng”. It now
appears likely that moving agriculture
towards a more sustainable development
pathway will depend largely on crop
agriculture, particularly 1f the sustainable
human diet 1s to be largely based on plant-
based firods. This will involve trade-offs
assoclated with the demands such a pathway
will place on land, water and genetic
resources in many parts of the world”.

The best hope for meeting the challenge

of sustainable agricultural development
lies tn the ongoing process of Innovation
now taking place using modern genetic
and informatton technologles to Increase
agricultural productivity while balancing

4

economic, environmental and social
outcomes associated with agriculture and
the firod system. Genetic improvement

15 2 necessary but not sufficlent part of
this strategy. as we learned in the Green
Revolution of the twentieth century,
because environmental owlcomes depend
on how crop production 1s managed at the
fleld scale as well as its interactions with
ecosystems across the landscape. Much
attention has been paid to the key role that
data acquisition plays In Improving crop
management — but improvements in system
performance will come about only when
agricultural sclence can make effective

use of these ‘big data’ Improved data and
analytics will need to be incorporated with
agronomic sclence, that 1s, what we call
digital agriculture (DA) — a set of digital
and information tec

performance 1s the lack of effective
policies to incentivize the implementation
of technologles such as PA in ways that
achieve thelr promise of environmental
tmprovement. For example, in the US
Midwest, both surface and groundwater
quality continue o be severely Impacted
by high levels of agricultural chemical use
and pollution caused by surface runoff and
leaching to groundwater, despite a vartety
of polictes implemented since the 19305 to
reduce soll eroston and runoff.

A related explanation for the faflure of
DA to deltver on its promises is that, thus
far, algortthm dev for precision
management have lacked the data and
computattonal tools needed to convert
complex geospatial information on soll
and plant status into appropriate crop

actions. M ton and

that integrates sensors, analytics and
automation to monttor, assess and manage
soil, climatic and genetic resources at field
and landscape scales.

So-called precision agriculture (PA)
began to be implemented in the early 19%0s
ostensibly to tncrease profitability and
reduce the environmental Impact of crop-
hbased systems by applying variable inputs
according to spatial variability of crop
growth” However, there is little evidence as
vet d Hng pread
and environmental benefits of precision
management technology®. Like many
mechanical ; the economic
benefits appear to be greatest for larger
farms that can spread their fixed costs over
many acres, and that can reduce labour costs
through automation. Thus, profitability
and adoption in the United States 15 highest
among larger farms, with profitabilaty only
shightly higher on average among adopters,
and imput use only marginally lower on
average, consistent with the Anding of
minimal environmental benefits from PA as
currently implemented”. One explanation for
the fatlure to achieve more substantial and
widespread improvemnents in environmental

misuse of data appears to be a consequence.
For example, many farmers utilize preciston
technology to apply more nitrogen (N)
fertilizer to low-yielding portions of rain-
fed fields 1n the hope of increasing yelds,
rather than less N to avoid fertilizer losses
through leaching and runoff of N that crops
cannit use. This tendency 15 unded
by apparent conflicts between farmers’ goal
to maximize economic returns, and the
objective of input suppliers to maximize
sales of tnputs. Thus, ironically, precision
management tools may result in lower
economic and environmental sustainability
1f not used appropriately.

Recent research suggests that

'ments in DA technology could

transform these trade-offs into the win-win
synergies that were envisioned for PA, and
also help re-design agricultural landscapes
fior sustainability. Given the inherent
warlability in climate, soll and topography,
appropriate assessments of yield vartability
to make more Informed decislons require at
least several years of data'. New methods
of analysing spatial-temporal data from
satellites or yleld-monitor data from farmer
machinery can produce yield stabality
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Fig. 1| DA in agricultural systems. DA can be used to design and implement sustainable agricultural systems at farm and landscape scales.
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outlined in gray (see also Fig. 2). Mean yields for the larger nine-state study region were generated by applying the preferred SCYM model to Landsat satellite data.




 Setting-aside just a small proportion
of arable land

* Optimising field shapes to increase
efficiency of agricultural management

* Employing ecological theory to
establish high-value non-crop habitats
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Infield optimized route planning in harvesting operations for risk
of soil compaction reduction
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Abstract

Soil compaction is a major problem in arable farming mainly caused by the intensive
traffic of heavy machinery. It affects negatively soil and crop development. Even though
d the most d repeated traffic deteriorates further
the soil and subsoil even up to irreversible conditions. Intelligent infield traffic planning

the first wheeling is cc ging,
in the form of optimized route planning is one key option to mitigate soil compaction.
Currently, no comprehensive evaluation of the benefits of such methods exists. In this
paper, a harvest logistics optimization system was employed to evaluate the effective-
ness of optimized route planning in reducing traffic by generating simulated operational
data and comparing it to a set of six recorded fields ranging in size (2-21 ha) and shape.
For the evaluation, simulated and recorded data for each 12 X 12 m grid cell within the
fields were compared by analysing three variables, that is, traffic occurrences, accumu-
lated traffic load and maximum traffic load per grid cell. The results showed a reduction
of the total number of traffic occurrences with a field size weighted mean of relative dif-
ferences of 9.8%. A reduction of 5.6% for the accumulated traffic load, and an increase
of 4.0% for the maximum traffic load. Repeated traffic was reduced in four of the six
fields. Even though optimized route planning is not directly intended for traffic reduc-
tion, it can notably contribute to such mitigation efforts and adds an extra element to the
overall farm strategy for soil compaction mitigation.
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A) Habitat connectivity B) Habitat amount l ‘C) Landscape mosaic D) Habitat heterogeneity
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Fig. 1. Visualisation of the main ecological principles that can be applied to improve agricultural landscapes for biodiversity. The upper panel shows an original
landscape where the biodiversity value can be enhanced by increasing habitat connectivity (A; adding new set-asides that act like stepping stones) or habitat amount
(B; enlarging existing non-crop habitats), decreasing grain size (C; splitting cultivated fields, creating thereby more edges), or increasing habitat heterogeneity (D;
new habitat types and crops are introduced to the landscape). Modifications made in panels A-D are highlighted in colour. The bottom panel represents an ideal
scenario where all these principles are applied simultaneously.
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Fig. B2. Step-by-step example of landscape rationalisation using the Ecologically-Informed Precision Conservation (EIPC) framework. Panel A
shows the current situation in a focal landscape (aerial photography). Panel F represents optimal solution generated for the focal landscape
using the EIPC framework. Colours (green to brown) in panels B-F indicate yield distribution within the model landscape; darkest green equals
to 140 % and darkest brown equals to 50 % of average yield. Red areas in panel C indicate 25 % of arable land with the lowest vield potential.
See the text in Box 2 for more details on each step of the EIPC framework.
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+ Choose maps to display
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+ Layer transparency

N
pr— pe—
Program na podporu aplikovaného vyzkumu
Minesterstva zemédélstvi 2024-2032

Welcome to E-Planner! E-Planner has been developed by UKCEH to help farmers and other land mangers
0 L il identify the most suitable places for different environmental management options via easy to use, interactive
S maps. E-Planner is free to use and covers the majority of agricultural land in GB.

e_ I G n n er The tool uses environmental datasets to produce maps of the relative suitability of land for different
p environmental outcomes. E-Planner currently maps relative suitability for these options:

R . - . .\
« Water resource protection (buffer strips and cover crops) ?Woodland creation

« Woodland creation (planting of trees on-farm)
« Sown winter bird food (wild bird seed margins)

« Flower-rich pollinator habitats (flower margins and grassland
restoration)

« Wet grassland restoration (restoring wet grassland and
floodplain meadows)

Suitability is based on topography, soils, nearby habitats, landscape
features etc. Suitability is then presented as easy to explore ‘heat
maps’ for a chosen area or farm, making it simple to compare the most

-

suitable option for a given area or to identify the most suitable location :ﬁ.ﬂﬂ/
for a specific option. ‘ o 1 Low /

E-Planner is intended to support farmer decisions by presenting
complex environmental data in an easy to interpret way. But it cannot take the place of local knowledge and therefore does not suggest an
‘optimum’ solution. We suggest the following workflow:

Make an assessment

Think about what you want to do. Use precision agriculture data
(e.g. yield maps) or your own knowledge to identify less productive
or difficult to farm areas. Consider options you might choose.




Erosion risk analysis

Water quality effects

Consideration of agricultural practices

Inclusion of local/national politics/targets = e
(e.g., to decrease arable field size)

Inclusion of local specifics (e.g.,
conservation priorities, focal
species/habitats)




Data availability (mandatory yield reporting)

Biological knowledge (local species pool,
optimal non-crop habitat management etc.)

Socio-economic limitations (e.g., land
ownership impeding land-use changes)

And a lot of other small issues
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Systematic insect monitoring in the Czech Republic
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Fig. 1. Map showing the distribution of study sites in Estonia, Northern Europe.
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Fig.

controls in red, field defects in black, and Onobrychis field defects in blue. Data are shown separately for OSR flowering and ripening periods. Mean values and

standard errors are shown separately for butterflies, bees and wasps (combined), hoverflies, true bugs, carabid beetles, rove beetles, spiders and myriapods. (For

interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)



Data collection

Data processing

Data output

Figure 1. Workflows from data collection to end product of each of the four technologies covered in this review.
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Fig. 3. Presence probability for all analysed species and measured environmental variable combinations. Moisture is shown in blue, vegetation cover in green,

average seasonal temperature in red, vegetation height in grey, and direct radiation in yellow. Species are ordered alphabetically. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)
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